Predicting essential genes based on network and sequence analysis.
نویسندگان
چکیده
Essential genes are indispensable to the viability of an organism. Identification and analysis of essential genes is key to understanding the systems level organization of living cells. On the other hand, the ability to predict these genes in pathogens is of great importance for directed drug development. Global analysis of protein interaction networks provides an effective way to elucidate the relationships between genes. It has been found that essential genes tend to be highly connected and generally have more interactions than nonessential ones. With recent large-scale identifications of essential genes and protein-protein interactions in Saccharomyces cerevisiae and Escherichia coli, we have systematically investigated the topological properties of essential and nonessential genes in the protein-protein interaction networks. Essential genes tend to play topologically more important roles in protein interaction networks. Many topological features were found to be statistically discriminative between essential and nonessential genes. In addition, we have also examined sequence properties such as open reading frame length, strand, and phyletic retention for their association with the gene essentiality. Employing the topological features in the protein interaction network and the sequence properties, we have built a machine learning classifier capable of predicting essential genes. Computational prediction of essential genes circumvents expensive and difficult experimental screens and will help antimicrobial drug development.
منابع مشابه
Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملIn silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کاملPredicting essential genes in prokaryotic genomes using a linear method: ZUPLS.
An effective linear method, ZUPLS, was developed to improve the accuracy and speed of prokaryotic essential gene identification. ZUPLS only uses the Z-curve and other sequence-based features. Such features can be calculated readily from the DNA/amino acid sequences. Therefore, no well-studied biological network knowledge is required for using ZUPLS. This significantly simplifies essential gene ...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular bioSystems
دوره 5 12 شماره
صفحات -
تاریخ انتشار 2009